солнечная радиация

Зональное распределение солнечной радиации у земной поверхности

Мы проанализировали распределение радиации на границе атмосферы. До земной поверхности она доходит ослабленной атмосферным поглощением и рассеянием. Кроме того, в атмо­сфере всегда есть облака, и прямая солнечная радиация часто вообще не достигает земной поверхности, поглощаясь, рассеи­ваясь и отражаясь обратно облаками. Облачность может умень­шать приток прямой радиации в широких пределах. Например, в Ташкенте, в зоне пустыни, в малооблачном августе теряется вследствие наличия облаков всего 20% прямой солнечной ра­диации. Но во Владивостоке с его муссонным климатом потеря прямой радиации вследствие облачности летом составляет 75%. В Ленинграде, даже в среднем за год, облака не пропускают к земной поверхности 65% прямой радиации.

Итак, действительные количества прямой солнечной радиа­ции, достигающие земной поверхности в течение того или иного времени, будут значительно меньше, чем количества, рассчитан­ные для границы атмосферы. Распределение же их по Земному шару будет более сложным, так как степень прозрачности атмосферы и условия облачности весьма изменчивы в зависимости от географической обстановки.


Радиационный баланс земной поверхности

Разность между поглощенной радиацией и эффективным из­лучением

называют радиационным балансом земной поверхности. Другое ее название — остаточная радиация.

Радиационный баланс переходит .....


Отражение солнечной радиации. Поглощенная радиация. Альбедо Земли

     Падая на земную поверхность, суммарная радиация в большей своей части поглощается в верхнем, тонком слое почвы или воды и переходит в тепло, а частично отражается. Величина отражения солнечной радиации земной поверхностью зависит от характера этой поверхности. Отношение количества отраженной радиации к общему количеству радиации, падающей на данную поверхность, называется альбедо поверхности. Это отношение выражается в процентах.

     Итак, из общего потока суммарной радиации Isinh+i от­ражается от земной поверхности часть его (Isinh + i)А, где А — альбедо поверхности. Остальная часть суммарной радиации (Isinh + i) (1- А) поглощается земной поверхностью и идет на нагревание верхних слоев почвы и воды. Эту часть называют поглощенной радиацией.


Явления, связанные с рассеянием солнечной радиации

     Голубой цвет неба — это цвет самого воздуха, обуслов­ленный рассеянием в нем солнечных лучей. Воздух прозрачен в тонком слое, как прозрачна в тонком слое вода. Но в мощной толще атмосферы воздух имеет голубой цвет, подобно тому, как вода уже в сравнительно малой толще, в несколько метров, имеет зеленоватый цвет. Голубой цвет воздуха можно видеть, не только глядя на небесный свод, но и рассматривая отдален­ные предметы, которые кажутся окутанными голубоватой дым­кой. С высотой, по мере уменьшения плотности воздуха, т. е. ко­личества рассеивающих частиц, цвет неба становится темнее и переходит в густо-синий, а в стратосфере — в черно-фиолетовый.

     Чем больше в воздухе помутняющих примесей более крупных размеров, чем молекулы воздуха, тем больше доля длинновол­новых лучей в спектре солнечной радиации и тем белесоватее становится окраска небесного свода. Частицами тумана, обла­ков и крупной пыли, диаметром больше 1,2 мк, лучи всех длин волн диффузно отражаются одинаково; поэтому отдаленные предметы при тумане и пыльной мгле заволакиваются уже не голубой, а белой или серой завесой. Облака, на которые падает солнечный свет, кажутся поэтому же белыми.


Поглощение солнечной радиации в атмосфере

     В атмосфере поглощается сравнительно небольшое количе­ство солнечной радиации, при этом главным образом в инфра­красной части спектра. Это поглощение — избирательное: раз­ные газы поглощают радиацию в разных участках спектра и в разной степени.

     Азот поглощает радиацию только очень малых длин волн в ультрафиолетовой части спектра. Энергия солнечной радиации в этом участке спектра совершенно ничтожна, и потому погло­щение азотом практически не отражается на интенсивности сол­нечной радиации. В большей степени, но все же очень мало по­глощает солнечную радиацию кислород — в двух узких участках видимой части спектра и в ультрафиолетовой его части. Более сильным поглотителем солнечной радиации является озон. Его содержание в воздухе, даже в стратосфере, очень мало; тем не менее он настолько сильно поглощает ультрафиолетовую радиацию, что из солнечной постоянной теряется несколько про­центов. В результате поглощения в верхних слоях атмосферы в солнечном спектре у земной поверхности не наблюдаются волны короче 0,29 мк.


Изменения солнечной радиации в атмосфере и на земной поверхности

     Проходя сквозь атмосферу, солнечная радиация частично рассеивается атмосферными газами и аэрозольными примесями к воздуху и переходит в особую форму рассеянной радиации. Частично же она поглощается молекулами атмосферных газов и примесями к воздуху и переходит в теплоту, идет на нагревание атмосферы.

     Нерассеянная и непоглощенная в атмосфере прямая солнеч­ная радиация достигает земной поверхности. Она частично от­ражается от земной поверхности, а в большей степени погло­щается ею и нагревает ее. Часть рассеянной радиации также до­стигает земной поверхности, частично от нее отражается и частично ею поглощается. Другая часть рассеянной радиации уходит вверх, в межпланетное пространство.


Солнечная постоянная и общий приток солнечной радиации к Земле

Интенсивность солнечной радиации перед вступлением ее в атмосферу (обычно говорят: «на верхней границе атмосферы» или «в отсутствии атмосферы») называют солнечной постоянной. Смысл слова постоянная состоит здесь в том, что эта величина не зависит от поглощения и рассеяния радиации в атмосфере. Она относится к радиации, на которую атмосфера еще не по­влияла. Солнечная постоянная, зависит, таким образом, только от излучательной способности Солнца и от расстояния между Землей и Солнцем.

Земля вращается вокруг Солнца по мало растянутому эл­липсу, в одном из фокусов которого находится Солнце. В начале января она наиболее близка к Солнцу (147 млн. км), в начале июля — наиболее далека от него (152 млн. км). Так как интен­сивность радиации меняется обратно пропорционально квадрату расстояния, то солнечная постоянная в течение года меняется на ±3,5%. При среднем расстоянии Земли от Солнца солнечная постоянная, по новейшим определениям, с использованием ра­кетных измерений, равна 2,00±0,04 кал/см2мин. Однако за стан­дартное ее значение по международному соглашению принята величина 1,98 кал/см2 мин.


Спектральный состав солнечной радиации

На интервал длин волн между 0,1 и 4 мк приходится 99% всей энергии солнечной радиации. Всего 1% остается на радиа­цию с меньшими и большими длинами волн, вплоть до рентге­новых лучей и радиоволн.

Видимый свет занимает узкий интервал длин волн, всего от 0,40 до 0,75 мк. Однако в этом интервале заключается почти половина всей солнечной лучистой энергии (46%). Почти столько же (47%) приходится на инфракрасные лучи, а остальные 7% — на ультрафиолетовые.

Распределение энергии в спектре солнечной радиации до по­ступления ее в атмосферу можно приближенно найти путем эк­страполяции результатов наземных наблюдений. В последнее время важные результаты получены также с помощью ракет и спутников.


Лучистое и тепловое равновесие Земли

Лучистая энергия Солнца является основным, а практически единственным источником тепла для поверхности Земли и для ее атмосферы. Радиация, поступающая от звезд и от Луны, ничтожно мала по сравнению с солнечной радиацией. Также ни­чтожно мал и поток тепла, направленный к земной поверхности и в атмосферу из глубин Земли.

Часть солнечной радиации представляет собой видимый свет. Тем самым Солнце является для Земли источником не только тепла, но и света, важного для жизни на земной поверхности.

Лучистая энергия Солнца превращается в тепло отчасти в самой атмосфере, но главным образом на земной поверхности. Она идет здесь на нагревание верхних слоев почвы и воды, а от их и воздуха. Нагретая земная поверхность и нагретая атмо­сфера в свою очередь сами излучают невидимую инфракрасную радиацию. Отдавая эту радиацию в мировое пространство, зем­ная поверхность и атмосфера охлаждаются.


Теплооборот

     Существует три основных цикла атмосферных процессов, определяющих климат. Это так называемые климатообразующие процессы — теплооборот, влагооборот и атмосферная цирку­ляция.

     Теплооборот, создающий тепловой режим атмосферы, со­стоит в следующем.

     Сквозь атмосферу проходит поток солнечной радиации. Ат­мосфера частично поглощает солнечные лучи, преобразуя их энергию в теплоту; частично рассеивает их, меняя по качеству (спектральному составу); частично они отражаются назад об­лаками.

     Радиация, прошедшая сквозь атмосферу (отчасти и рассеян­ная атмосферой), падая на земную поверхность, частично от нее отражается, но в большей части поглощается ею и нагре­вает верхние слои почвы и водоемов. Земная поверхность сама испускает невидимую инфракрасную радиацию, которая в боль­шей части поглощается атмосферой и нагревает ее. Атмосфера, в свою очередь, излучает инфракрасную радиацию, большая часть которой поглощается земной поверхностью. В то же время земная и атмосферная радиация непрерывно уходит за пределы атмосферы вместе с отраженной солнечной радиацией, уравно­вешивая приток солнечной радиации к Земле.