атмосфера

Сила трения

Трение в атмосфере также является силой, которая сооб­щает уже существующему движению воздуха отрицательное ус­корение, т. е. замедляет движение, а также меняет его направ­ление.

В первом приближении силу трения в атмосфере можно счи­тать направленной противоположно скорости. Сила трения наи­более велика у самой земной поверхности. С высотой она убы­вает и на уровне около 1000 м становится незначительной по сравнению с другими силами, действующими на движение воз­духа. Поэтому начиная с этой высоты ею можно пренебречь. Высота, на которой сила трения практически исчезает (от 500 до 1500 м, в среднем около 1000 м), называется уровнем трения.

Нижний слой тропосферы, от земной поверхности до уровня трения, называется слоем трения или планетарным пограничным слоем.

Зональное распределение солнечной радиации у земной поверхности

Мы проанализировали распределение радиации на границе атмосферы. До земной поверхности она доходит ослабленной атмосферным поглощением и рассеянием. Кроме того, в атмо­сфере всегда есть облака, и прямая солнечная радиация часто вообще не достигает земной поверхности, поглощаясь, рассеи­ваясь и отражаясь обратно облаками. Облачность может умень­шать приток прямой радиации в широких пределах. Например, в Ташкенте, в зоне пустыни, в малооблачном августе теряется вследствие наличия облаков всего 20% прямой солнечной ра­диации. Но во Владивостоке с его муссонным климатом потеря прямой радиации вследствие облачности летом составляет 75%. В Ленинграде, даже в среднем за год, облака не пропускают к земной поверхности 65% прямой радиации.

Итак, действительные количества прямой солнечной радиа­ции, достигающие земной поверхности в течение того или иного времени, будут значительно меньше, чем количества, рассчитан­ные для границы атмосферы. Распределение же их по Земному шару будет более сложным, так как степень прозрачности атмосферы и условия облачности весьма изменчивы в зависимости от географической обстановки.

Явления, связанные с рассеянием солнечной радиации

     Голубой цвет неба — это цвет самого воздуха, обуслов­ленный рассеянием в нем солнечных лучей. Воздух прозрачен в тонком слое, как прозрачна в тонком слое вода. Но в мощной толще атмосферы воздух имеет голубой цвет, подобно тому, как вода уже в сравнительно малой толще, в несколько метров, имеет зеленоватый цвет. Голубой цвет воздуха можно видеть, не только глядя на небесный свод, но и рассматривая отдален­ные предметы, которые кажутся окутанными голубоватой дым­кой. С высотой, по мере уменьшения плотности воздуха, т. е. ко­личества рассеивающих частиц, цвет неба становится темнее и переходит в густо-синий, а в стратосфере — в черно-фиолетовый.

     Чем больше в воздухе помутняющих примесей более крупных размеров, чем молекулы воздуха, тем больше доля длинновол­новых лучей в спектре солнечной радиации и тем белесоватее становится окраска небесного свода. Частицами тумана, обла­ков и крупной пыли, диаметром больше 1,2 мк, лучи всех длин волн диффузно отражаются одинаково; поэтому отдаленные предметы при тумане и пыльной мгле заволакиваются уже не голубой, а белой или серой завесой. Облака, на которые падает солнечный свет, кажутся поэтому же белыми.

Поглощение солнечной радиации в атмосфере

     В атмосфере поглощается сравнительно небольшое количе­ство солнечной радиации, при этом главным образом в инфра­красной части спектра. Это поглощение — избирательное: раз­ные газы поглощают радиацию в разных участках спектра и в разной степени.

     Азот поглощает радиацию только очень малых длин волн в ультрафиолетовой части спектра. Энергия солнечной радиации в этом участке спектра совершенно ничтожна, и потому погло­щение азотом практически не отражается на интенсивности сол­нечной радиации. В большей степени, но все же очень мало по­глощает солнечную радиацию кислород — в двух узких участках видимой части спектра и в ультрафиолетовой его части. Более сильным поглотителем солнечной радиации является озон. Его содержание в воздухе, даже в стратосфере, очень мало; тем не менее он настолько сильно поглощает ультрафиолетовую радиацию, что из солнечной постоянной теряется несколько про­центов. В результате поглощения в верхних слоях атмосферы в солнечном спектре у земной поверхности не наблюдаются волны короче 0,29 мк.

Изменения солнечной радиации в атмосфере и на земной поверхности

     Проходя сквозь атмосферу, солнечная радиация частично рассеивается атмосферными газами и аэрозольными примесями к воздуху и переходит в особую форму рассеянной радиации. Частично же она поглощается молекулами атмосферных газов и примесями к воздуху и переходит в теплоту, идет на нагревание атмосферы.

     Нерассеянная и непоглощенная в атмосфере прямая солнеч­ная радиация достигает земной поверхности. Она частично от­ражается от земной поверхности, а в большей степени погло­щается ею и нагревает ее. Часть рассеянной радиации также до­стигает земной поверхности, частично от нее отражается и частично ею поглощается. Другая часть рассеянной радиации уходит вверх, в межпланетное пространство.

Сторінки