ветер

Зональное распределение давления и ветра у земной поверхности и в нижней тропосфере

У земной поверхности и в нижней тропосфере зональное распределение давления и ветра сложнее, чем в вышележащих слоях.

Сначала мы рассмотрим многолетние средние величины дав­ления по широтным кругам. Приведем график многолетних средних величин давления для широтных кругов на уровне моря в январе и в июле (рис. 7.2).

Зоны давления и ветра в верхней тропосфере и в стратосфере

Зональность в распределении давления и ветра яснее и проще не у земной поверхности, а в верхней тропосфере и в стра­тосфере.

Как нам уже известно, высокое давление здесь более или менее близко совпадает с высокой температурой, а низкое дав­ление — с низкой температурой. Поскольку температура в тро­посфере в среднем падает от низких широт к высоким, то и меридиональный барический градиент направлен, начиная с вы­соты 4—5 км, также в общем из низких широт в высокие. В связи с этим, например, изобарическая поверхность 300 мб проходит зимою над экватором на высоте около 9700 м, над северным полюсом на высоте около 8400 м, а над южным полю­сом даже на высоте около 8100 м. Летом эти разности. Меньше, но все-таки значительны.

Связь ветра с изменениями давления

Как ни малы отклонения действительного ветра в свободной атмосфере от градиентного, именно они имеют решающее зна­чение для изменений атмосферного давления.

Атмосферное давление на каждом уровне, как мы знаем, равно весу вышележащего столба воздуха, т. е. пропорцио­нально массе воздуха в этом столбе. Убыль массы воздуха в ат­мосферном столбе над тем или иным пунктом приводит к паде­нию давления, увеличение массы воздуха — к росту давления.

Над любым уровнем в свободной атмосфере масса воздуха может меняться, между прочим, вследствие вертикальных дви­жений воздуха. При нисходящем движении часть воздуха будет уходить ниже данного уровня, и давление на этом уровне будет убывать. В случае восходящего движения наблюдается обратное.

Суточный ход ветра

В слое трения обнаруживается суточный ход скорости ветра, часто хорошо заметный не только при осреднении дан­ных наблюдений, но и в отдельные дни. У земной поверхности над сушей максимум скорости ветра наблюдается около 14 ча­сов, минимум — ночью или утром. Начиная примерно с высоты 500 м суточный ход обратный, с максимумом ночью и миниму­мом днем.

Амплитуда суточного хода скорости ветра над сушей — по­рядка половины средней суточной величины скорости. Особенно велика она летом в ясную погоду.

Над морем суточный ход скорости ветра незначителен. Ко­нечно, суточный ход часто перекрывается непериодическими из­менениями ветра, связанными с циклонической деятельностью.

Термический ветер

Геострофический или градиентный ветер направлен, как мы уже знаем, по изобарам. Приблизительно по изобарам направ­лен и действительный ветер в свободной атмосфере.

Но если с высотой меняется направление изобар, то вместе с ним должно меняться направление ветра. Равным образом и скорость ветра будет меняться с высотой в зависимости от из­менения величины барического градиента.

Нам уже известно, что бариче­ский градиент получает с высотой дополнительную составляю­щую, направленную по температурному градиенту и пропорцио­нальную ему, а также и приросту высоты. Следовательно, и градиентный ветер получает с высотой дополнительную состав­ляющую скорости, направленную по изотерме (имеется в виду средняя изотерма всего рассматриваемого слоя атмосферы).

Градиентный ветер

Если движение воздуха происходит без действия силы тре­ния, но криволинейно, то это значит, что, кроме силы градиента и отклоняющей силы вращения Земли, появляется еще центробежная сила, выражающаяся как С = V2/r, где Vскорость, a rрадиус кривизны траектории движущегося воздуха. Направлена центробежная сила по радиусу кривизны траектории наружу, в сторону выпуклости траектории.

Тогда в случае равномерного движения должны уравнове­шиваться уже три силы, действующие на воздух, — градиента, отклоняющая и центробежная.

Отклоняющая сила вращения Земли

Мы уже знаем, что под ветром имеется в виду движение воздуха относительно земной поверхности, т. е. относительно системы координат, вращающейся вместе с Землей. В механике доказывается, что при движении любого тела во вращающейся системе координат возникает отклонение от первоначального направления движения относительно этой системы. Иными сло­вами, тело, движущееся во вращающейся системе координат, получает относительно этой системы так называемое поворотное ускорение, или ускорение Кориолиса, направленное под прямым углом к скорости. Таким образом, поворотное ускорение не ме­няет величину скорости, а только меняет направление движения.

Будем под вращающейся системой координат разуметь по­верхность вращающейся Земли, а под телом — воздух. На вра­щающейся Земле поворотное ускорение (здесь и дальше речь идет о его горизонтальной составляющей) направлено в север­ном полушарии вправо от скорости, в южном — влево.

Сторінки